Part Number Hot Search : 
XF10B1Q1 20SQ040 00GB12 MTN1136 100ML PD024OX8 M1Z10 1H471
Product Description
Full Text Search
 

To Download MAXIM6012 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 MAX6100EUR Rev. A
RELIABILITY REPORT FOR MAX6100EUR PLASTIC ENCAPSULATED DEVICES
February 14, 2003
MAXIM INTEGRATED PRODUCTS
120 SAN GABRIEL DR. SUNNYVALE, CA 94086
Written by
Reviewed by
Jim Pedicord Quality Assurance Reliability Lab Manager
Bryan J. Preeshl Quality Assurance Executive Director
Conclusion The MAX6100 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards. Table of Contents I. ........Device Description II. ........Ma nufacturing Information III. .......Packaging Information V. ........Quality Assurance Information VI. .......Reliability Evaluation IV. .......Die Information .....Attachments
I. Device Description A. General The MAX6100 is a low-cost, low-dropout (LDO), micropower voltage references. This three-terminal reference has an output voltage option of 1.8V. It features a proprietary curvature-correction circuit and laser-trimmed, thin-film resistors that result in a low temperature coefficient of 75ppm/C (max) and an initial accuracy of 0.4% (max). This device is specified over the extended temperature range (-40C to +85C). This series-mode voltage reference draws only 90A of supply current and can source 5mA and sink 2mA of load current. Unlike conventional shunt-mode (two-terminal) references that waste supply current and require an external resistor, this device offers a supply current that is virtually independent of the supply voltage (with only a 4A/V variation with supply voltage) and does not require an external resistor. Additionally, this internally compensated device does not require an external compensation capacitor and is stable with load capacitance. Eliminating the external compensation capacitor saves valuable board area in space-critical applications. Low dropout voltage and supply-independent, ultra-low supply current makes this device ideal for battery-operated, high-performance, lowvoltage systems. The MAX6100 is available in a tiny 3-pin SOT23 packages.
B. Absolute Maximum Ratings Item (Voltages Referenced to GND) IN OUT Output Short-Circuit to GND or IN (VIN < 6V) Output Short-Circuit to GND or IN (VIN = 6V) Operating Temperature Range Storage Temperature Range Lead Temperature (soldering, 10s) Continuous Power Dissipation (TA = +70C) 3-Pin SOT23 Derates above +70C 3-Pin SOT23
Rating
-0.3V to +13.5V -0.3V to (VIN + 0.3V) Continuous 60s -40C to +85C -65C to +150C +300C 320mW 4.0mW/C
II. Manufacturing Information A. Description/Function: Low-Cost, Micropower, Low-Dropout, High-Output-Current, SOT23 Voltage References B. Process: C. Number of Device Transistors: D. Fabrication Location: E. Assembly Location: F. Date of Initial Production: III. Packaging Information A. Package Type: B. Lead Frame: C. Lead Finish: D. Die Attach: E. Bondwire: F. Mold Material: G. Assembly Diagram: H. Flammability Rating: I. Classification of Moisture Sensitivity per JEDEC standard JESD22-112: 3-Pin SOT23 Copper or Alloy 42 Solder Plate Silver-filled Epoxy Gold (1.0 mil dia.) Epoxy with silica filler # 05-0901-0179 Class UL94-V0 B12 (Standard 1.2 micron silicon gate CMOS) 117 California or Oregon, USA Malaysia or Thailand March, 2001
Level 1
IV. Die Information A. Dimensions: B. Passivation: C. Interconnect: D. Backside Metallization: E. Minimum Metal Width: F. Minimum Metal Spacing: G. Bondpad Dimensions: H. Isolation Dielectric: I. Die Separation Method: 44 x 31mils Si3N4/SiO2 (Silicon nitride/ Silicon dioxide) Aluminum/Si (Si = 1%) None 1.2 microns (as drawn) 1.2 microns (as drawn) 5 mil. Sq. SiO2 Wafer Saw
V. Quality Assurance Information A. Quality Assurance Contacts: Jim Pedicord (Manager, Reliability Operations) Bryan Preeshl (Executive Director) Kenneth Huening (Vice President) 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
B. Outgoing Inspection Level:
C. Observed Outgoing Defect Rate: < 50 ppm D. Sampling Plan: Mil-Std-105D VI. Reliability Evaluation A. Accelerated Life Test The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate () is calculated as follows: = 1 = MTTF 1.83 (Chi square value for MTTF upper limit) 192 x 4389 x 160 x 2 Temperature Acceleration factor assuming an activation energy of 0.8eV = 6.79 x 10-9 = 6.79 F.I.T. (60% confidence level @ 25C)
This low failure rate represents data collected from Maxim's reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. # 06-5630) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M). B. Moisture Resistance Tests Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85C/85%RH testing is done per generic device/package family once a quarter. C. E.S.D. and Latch-Up Testing The RF24-7 die type has been found to have all pins able to withstand a transient pulse of 1500V, per MilStd-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of 250mA.
Table 1 Reliability Evaluation Test Results MAX6100EUR TEST ITEM TEST CONDITION FAILURE IDENTIFICATION SAMPLE SIZE NUMBER OF FAILURES
PACKAGE
Static Life Test (Note 1) Ta = 135C Biased Time = 192 hrs. Moisture Testing (Note 2) Pressure Pot Ta = 121C P = 15 psi. RH= 100% Time = 168hrs. Ta = 85C RH = 85% Biased Time = 1000hrs.
DC Parameters & functionality
160
0
DC Parameters & functionality
SOT
77
0
85/85
DC Parameters & functionality
77
0
Mechanical Stress (Note 2) Temperature Cycle -65C/150C 1000 Cycles Method 1010 DC Parameters & functionality 77 0
Note 1: Life Test Data may represent plastic DIP qualification lots. Note 2: Generic Package/Process data
Attachment #1 TABLE II. Pin combination to be tested. 1/ 2/
Terminal A (Each pin individually connected to terminal A with the other floating) 1. 2. All pins except VPS1 3/ All input and output pins
Terminal B (The common combination of all like-named pins connected to terminal B) All VPS1 pins All other input-output pins
1/ Table II is restated in narrative form in 3.4 below. 2/ No connects are not to be tested. 3/ Repeat pin combination I for each named Power supply and for ground (e.g., where VPS1 is VDD, VCC, VSS, VBB, GND, +VS, -VS, VREF, etc). 3.4 a. b. Pin combinations to be tested. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V , or V SS1 SS2 or V SS3 or V CC1 , or V CC2 ) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.
c.
TERMINAL C
R1 S1 R2
TERMINAL A REGULATED HIGH VOLTAGE SUPPLY
S2 C1
DUT SOCKET
SHORT CURRENT PROBE (NOTE 6)
TERMINAL B
R = 1.5k C = 100pf
TERMINAL D Mil Std 883D Method 3015.7 Notice 8
ONCE PER SOCKET
ONCE PER BOARD
5K OHMS
35 uA + 10 VOLTS
1 3 2 0.1 uF
3 PIN SOT
DEVICES: MAX 6012 / 6021 / 6025 / 6030 / 6041 / 6050/6018 Notes: +38 Volts for MAX6035 only. Apply jumper pin 6061/6062/6063/6064/6065/6066/6067/6068/6035 to +20V pin. +5.5V for the MAX6018. Max current = 35 uA /MAX6061-6068= 125uA / MAX6035= 100uA.
DOCUMENT I.D. 06-5630
REVISION D
MAXIM TITLE: BI Circuit (MAX6012/6021/6025/6030/6041/6050/6018/6061/6062/6063/6064/6065/6066/6067/606 8/6035)
PAGE
2
OF 3


▲Up To Search▲   

 
Price & Availability of MAXIM6012

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X